This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Syntheses and Antimicrobial Activity of 2-Substituted-2,3-Dihydro-3-(4'-Bromophenyl)-1H-Naphth[1,2-e][1,3,2]Oxazaphosphorin 2-Oxides/Sulfides

D. Srinivasulu^a; C. Devendranath Reddy^a; C. Suresh Reddy^a; Chad W. Brown^b; Jacob D. Hager^b; Michelle Means^b; K. Darrell Berlin^b

^a Department of Chemistry, Sri Venkateswara University, Tirupati, India ^b Department of Chemistry, Oklahoma State University, Stillwater, OK, USA

To cite this Article Srinivasulu, D. , Reddy, C. Devendranath , Reddy, C. Suresh , Brown, Chad W. , Hager, Jacob D. , Means, Michelle and Berlin, K. Darrell(2000) 'Syntheses and Antimicrobial Activity of 2-Substituted-2,3-Dihydro-3-(4'-Bromophenyl)-1H-Naphth[1,2-e][1,3,2]Oxazaphosphorin 2-Oxides/Sulfides', Phosphorus, Sulfur, and Silicon and the Related Elements, 167: 1, 181 — 193

To link to this Article: DOI: 10.1080/10426500008082397 URL: http://dx.doi.org/10.1080/10426500008082397

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SYNTHESES AND ANTIMICROBIAL ACTIVITY OF 2-SUBSTITUTED-2,3-DIHYDRO-3-(4'-BROMOPHENYL)-1*H*-NAPHTH[1,2-e][1,3,2]OXAZAPHOSPHORIN 2-OXIDES/SULFIDES

D. SRINIVASULU^a, C. DEVENDRANATH REDDY^a,
C. SURESH REDDY^a, CHAD W. BROWN^b, JACOB D. HAGER^b,
MICHELLE MEANS^b and K. DARRELL BERLIN^{b*}

^aDepartment of Chemistry, Sri Venkateswara University, Tirupati, 517 502. India and ^bDepartment of Chemistry, Oklahoma State University, Stillwater, OK 74078 USA

(Received June 04, 2000; In final form August 16, 2000)

The syntheses of the first examples of 2-aryloxy-2,3-dihydro-3-(4'-bromophenyl)-1*H*-naphth [1,2-e][1,3,2]-oxazahosphorin 2-oxides (**3a-g**) have been achieved from the reaction of equimolar quantities of 1-(4-bromoanilinomethyl)-2-naphthol (1) with various arylphosphorodichloridates in dry toluene in the presence of triethylamine at 50–55 °C. 2-Benzyloxy/aryloxy/arylthio/bis(2-chloroethyl)amino-2,3-dihydro-3-(4'-bromophenyl)-1*H*-naphth[1,2-e][1,3,2]-oxazaphosphorin 2-sulfides (**3h-o**) have been synthesized through an intermediate monochloride, namely 2-chloro-2,3-dihydro-3-(4'-bromophenyl)-1*H*-naphth[1,2-e][1,3,2]oxazaphosphorin 2-sulfide (2). The structures of all products were confirmed by IR, ¹H, ¹SC and ³P NMR data as well as via mass spectral analysis. All compounds were screened for antibacterial activity against *Bacillus subtilis* and *Klebsiella pneumoniae* and for antifungal activity against *Aspergillus niger* and *Curvularia lunata*. A majority of the products exhibited significant activity in the assays.

Keywords: 2-Substituted-2,3-dihydro-3(4'-bromophenyl)-1H-naphth[1,2-e][1,3,2]oxazapho sphorim 2-oxides/sulfides; NMR analysis; mass spectral analysis; antimicrobial activities

INTRODUCTION

Naphthoxazaphosphorin 2-oxides/sulfides have exhibited good anticholinesterase activity in vitro. Certain related N-phosphorylated nitrogen mustards, such as cyclophosphamide, are well known antineoplastic agents.²

^{*} Corresponding Author.

The synthesis of naphth[1,2-e][1,3,2]oxazaphosphorin 2-oxides/sulfides (3a-o) (a very rare class of phosphorus-containing heterocycles), the corresponding structural characterization of these heterocycles by spectral studies (¹H, ¹³C, ³¹P NMR, and MS), and the antimicrobial activity thereof are reported in this paper as the first examples.

RESULTS AND DISCUSSION

Compounds 3a-g were synthesized by the cyclocondensation of equimolar quantities of 1-(4-bromoanilinomethyl)-2-naphthol³ (1) with arylphosphoro dichloridates⁴ in the presence of triethylamine at 50-55 °C in anhydrous toluene over 5-6 h (Scheme I). Crude solids 3a-g were obtained by filtration of the triethylamine hydrochloride, followed by evaporation of the filtrate. The residues were further purified by washing with water and recrystallization from ethanol and 2-propanol to afford colorless crystals or amorphous powders. In contrast, the syntheses of new naphthoxazaphosphorin 2-sulfides (3h-o) were achieved in a two-step route in which the intermediate 2 was formed but it proved far too hygroscopic to isolate or to characterize. To generate the P-sulfides, a reaction of 1 and thiophosphoryl chloride produced the key intermediate. 2-shloro-2,3-dihydro-3(4'-bromophenyl)-1H-naphth[1,2-e][1,3,2]oxazaphosphorin 2-sulfide (2). Treatment of 2 with benzyl alcohol/substituted phenols/thiophenols/bis(2-chloroethyl)amine led to the formation of title compounds 3h-o. Physical and IR data, 5-11 as well as ¹H, ³¹P, ¹³C NMR, and mass spectral data, are given in Tables I, II, III, and IV.

SCHEME I

The proton NMR spectra of 3 showed complex multiplets 12 in the region δ 6.37–8.12 for aromatic protons of naphthoxazaphosphorin, *N*-phenyl, and 2-aryoxy moieties. Distinguishing between the proton signals of naphthoxazaphosphorin, *N*-phenyl, and 2-aryloxy moieties was not possible due to high signal density at 300 MHz.

Methylene (H-4) protons of the oxazaphosphorin ring moiety resonated as multiplets 13 at δ 4.56–5.56 as induced by coupling with phosphorus. A singlet was observed at δ 4.62 for methyleneoxy (-OCH₂) protons of the exocyclic benzyloxy moiety of **3h**. Both N-methylene and chloromethylene protons of the bis(2-chloroethyl)-amino moiety of **3o** appeared as complex multiplets in the regions of δ 3.98–4.01 and δ 4.41–4.54. The methyl protons of the 2-aryloxy moieties of **3b-3e** resonated as singlets in the region δ 2.19–2.24. The chemical shift of the methyl protons of the *tert*-butyl group in **3j** appeared as a singlet at δ 1.39.

Interpretation of the ¹³C NMR data (Table III) was based, in part, upon an analysis of the intensities of non-protonated aromatic carbons and calculated chemical shift values. The low intensity chemical shifts at 146.3–148.2 ppm were assigned to the oxygen bearing carbon (C-11) of naphthoxaza-phoshorin 2-oxide. The quaternary carbons C-12, C-13, and C-14 showed low intensity signals at 113.7–116.4, 131.1–132.5, and 128.4–129.1 ppm, respectively, in the series. The high intensity singlet signals in the region 130.1–130.5, 121.6–124.6, 129.0–130.5, 129.1–130.2, 127.4–127.8, and 118.1–119.7 ppm were attributed to C-5, C-6, C-7, C-8, C-9, and C-10, respectively. Replacement of the phenoxy group by a bis(2-chloroethyl)amino group ¹² caused a downfield chemical shift of ~2 ppm for C-12 and an upfield chemical shift of ~2 ppm for C-11. The bridged methylene protons resonated in the region 49.5–51.2 ppm for the target compounds but did not exhibit any observable coupling with phosphorus.

Downloaded At: 13:01 28 January 2011

TABLE I Physical and IR data for 3a-30

				Ele	mental ,	Elemental Analyses			IRC	IR(cm ⁻¹)		
Compd	MF.	$MP(^{\circ}C)$	Yield (%)	F_c	Found (Calcd-%)	ılcd-%)	<u> </u>		P-0-	P-O-Caronn	P-N-	P-N-Culiph
				C	H	2	0=d	S=d	0=d	P=0 $O=C$	N-C	P-N
3a	C23H17BrNO3P	149-1504	99	59.15	3.45	3.09	1302		986	1223	1071	775
				(59.25)	(59.25) (3.67) (3.00)	(3.00)						
3b	C24H19BrNO3P	115-117	58	59.85	59.85 3.79 2.76	2.76	1300		970	1225	1080	725
				(60.02)	(60.02) (3.99) (2.92)	(2.92)						
36	C24H19BrNO3P	$110-112^{a}$	8	16.65	59.91 3.86 2.97	2.97	1305		975	1228	1080	730
				(60.02)	(60.02) (3.99) (2.92)	(2.92)						
34	C25H21BrNO1P	$132 - 133^{4}$	52	18:09	60.81 4.39 2.73	2.73	1315		975	1235	1080	740
				(60.74)	(4.28)	(2.83)						
Зе	C ₂₅ H ₂₁ BrNO ₃ P	$142 - 143^a$	55	60.64	60.64 4.15 2.91	2.91	1302		973	1236	1045	735
				(60.74)	(60.74) (4.28) (2.83)	(2.83)						
3£	C23H16BrCINO3P	136-137	19	55.01	55.01 3.37 2.92	2.92	1290		970	1220	1075	730
				(55.17)	(55.17) (3.22) (2.80)	(5.80)						
38	C23H ₁₆ BrCINO3P	133-134"	\$	55.25	55.25 3.15 2.85	2.85	1295		975	1230	1078	735
				(55.17)	(55.17) (3.22) (2.80)	(5.80)						
3h	C24H19BrNO2PS	181-182 ^b	28	58.20	58.20 3.91 2.75	2.75		803	957	1206	1074	
				(58.08)	(58.08) (3.86) (2.82)	(2.82)						
3;	C ₂₃ H ₁₇ BrNO ₂ PS	178-179 ^b	99	57.15	3.42	2.75		811	616	1228	1067	

				Elei	mental A	Elemental Analyses			IR(c	IR(cm-1)		
Compd	MF	$MP(^{\circ}C)$	Yield (%)	Fo	Found (Calcd-%)	h:d-%)	:		P-0-(P-O-Carm	P-N-	P-N-Caliph
				J	H	2	D=0		b=0	$P=S$ $P=O$ $O=C$ $N\cdot C$	N-C	P-N
				(57.27)	(57.27) (3.55) (2.90)	(2.90)						
3)	C ₂₇ H ₂₅ BrNO ₂ PS	175-177 ^b	20	60.09 4.55 2.47	4.55	2.47		809	953	1220	1065	
				(60.23)	(60.23) (4.68) (2.60)	(2.60)						
3k	C23H16BrCINO2PS	183-184 ^b	55	53.28	53.28 3.00 3.58	3.58		=	957	1221	1067	
				(53.46)	(53.46) (3.13) (2.71)	(2.71)						
ĸ	C23H16BrN2O4PS	191–192 ^b	52	52.45	52.45 3.15 5.45	5.45		815	952	1215	1099	
				(52.39)	(52.39) (3.06) (5.31)	(5.31)						
3m	C23H17BrNOPS2	185-186 ^b	57	55.28	55.28 3.55 2.85	2.85		8	943	1214	1082	
				(55.43)	(55.43) (3.44) (2.81)	(2.81)						
3n	C23H16BrCINOPS2	187-189 ^b	59	51.95	51.95 3.10 2.49	2.49		908	955	1216	060	
				(51.85)	(51.85) (3.03) (2.63)	(2.63)						
30	C21H20BrCl2N2OPS	181–182 ^b	49	47.42	47.42 3.92 5.15	5.15		<u>818</u>	950	1206	9601	
				(47.57)	(47.57) (3.80) 5.28)	5.28)						

Recrystallized from ethanol. Recrystallized from isopropyl alcohol. ਜ਼ ਛੰ

TABLE II ¹ H (DCCl ₃ /TMS/δ) and ³	P (85% H ₃ PO ₄) NMR data (ppm) fo	r 3 a-3 o
---	---	------------------

Compd	Ar-H	4-CH ₂	R"-CH₃	13 P
3a	7.10–7.35, 7.49–7.92 (m, 15 H)	5.06-5.31 (m, 2 H)		-10.20
3b	6.64-7.28, 7.45-7.92 (m, 14 H)	4.86-5.09 (m)	2.21 (s)	-12.19
3c	6.50-7.17, 7.55-7.97 (m, 14 H)	4.56-4.95 (m)	2.20 (s)	-13.43
3d	6.71–6.84, 7.36–7.65, 8.00–8.04 (m, 13 H)	5.28-5.34 (m)	2.19, 2.24 (s, 2"-CH ₃ , 5"-CH ₃)	-5.14
3e	6.72-6.78, 7.22-7.35 (m, 13 H)	5.04-5.28 (m)	2.22 (s, 6 H, 2 CH ₃)	-5.16
3f	6.86-7.45, 7.52-8.02 (m, 14 H0)	5.03-5.24 (m)		-12.26
3g	6.82-7.39, 7.53-7.98 (m, 14 H)	4.98-5.24 (m)		-14.70
$3h^a$	6.41-6.53, 7.25-8.07 (m, 15 H)	5.03-5.42 (m)		+51.47
3i	6.37-6.42, 7.22-8.00 (m, 15H)	4.87-5.38 (m)		+52.86
3j	6.65-6.73, 7.22-7.85 (m, 14 H)	5.01-5.30 (m)	1.39 (s, 9 H)	+53.92
3k	6.51–6.54, 7.14–7.64, 7.90–8.04 (m, 14 H)	5.30-5.40 (m)		+58.85
31	6.38-6.45, 7.20-8.03 (m, 14 H)	5.00-5.18 (m)		+65.43
3m	6.46-6.56, 7.20-8.01 (m, 15 H)	5.05-5.50 (m)		+85.74
3n	6.50-6.62, 7.35-8.12 (m, 14 H)	5.11-5.56 (m)		+86.23
3o ^b	6.40–6.43, 7.28–7.64, 7.82–8.01 (m, 10 H)	5.02-5.35 (m)		+55.92

TABLE III 13 C NMR data for representative members of 3^a (ppm from TMS)

Carbons	3а	3c	3e	3g	3j	3k	3m	3о
C-4	50.9	51.2	49.8	51.1	50.2	51.0	51.1	49.5
C-5	130.2	130.5	130.5	130.1	130.3	130.2	130.2	130.3
C-6	121.6	124.6	122.8	122.7	122.5	122.7	122.2	124.0
C-7	129.8	130.5	129.9	129.2	129.7	129.3	129.4	129.0
C-8	129.1	130.2	129.6	129.7	130.1	129.6	129.8	129.5
C-9	127.7	127.5	127.8	127.4	127.7	127.4	127.4	127.7
C-10	119.1	118.9	118.1	119.7	119.2	119.7	119.4	119.0
C-11	148.0	147.9	148.1	148.0	148.2	148.0	148.0	146.3
C-12	114.2	113.9	114.1	113.7	114.2	113.8	114.2	116.4

a. OCH $_2$; δ 4.62. b. (CH $_2$ -CH $_2$) $_2$ CI; δ 3.98–4.01 and 4.41–4.54 (m, 8 H).

Carbons	За	3c	3e	3g	3j	3k	3m	30
C-13	132.5	131.1	132.1	131.9	132.3	131.9	132.5	132.0
C-14	129.1	128.4	128.5	128.6	129.0	128.6	128.9	128.6
C-1'	148.2	147.9	148.1	148.3	148.1	148.3	148.3	147.3
C-2',6'	119.1	119.6	119.2	119.2	119.4	119.4	119.6	118.9
C-3',4'	132.5	131.3	132.1	132.2	131.9	132.2	131.1	132.7
C-4'	113.8	113.9	114.2	114.1	114.0	114.1	114.1	114.4
C-1"	150.3	149.1	152.5	152.7	151.9	152.7	131.1	51.8
C-2"	120.2	113.9	122.8	115.8	115.6	115.8	128.7	39.1
C-3"	129.8	130.5	129.6	129.7	126.8	129.6	128.8	
C-4"	126.2	130.2	120.8	127.2	142.9	130.2	125.5	
C-5"	129.8	130.5	136.7	129.7	126.8	129.6	128.8	
C-6"	120.2	113.9	117.3	115.8	115.6	115.8	128.8	
R"-CH ₃		20.3	20.6		13.7 (H ₃ C)			
					36.1 (<i>t</i> -C)			

^aNot recorded for 3b, 3d, 3f, 3h, 3i, 3l, and 3n.

The nitrogen bearing carbon C-1' appeared as a singlet in the range of 147.3–148.3 ppm. The other protonated carbons, C-2'/C-6' and C-3'/C-5" resonated in the region 118.9–119.6 ppm and 131.3–132.7 ppm, respectively, with high intensity. The bromine bearing carbon (C-4') signal appeared as a low intensity singlet at 113.8–114.4 ppm.

The signal for C-1" of the aryloxy ring resonated at 149.1–152.7 ppm in most compounds except for the signal for the same C-1" in **3m** which appeared at 131.1 ppm, possibly due to influence by the unsubstituted thiophenoxy ring. The chemical shifts of C-1" and C-2" of **3o** appeared at 51.8 ppm and 39.1 ppm, respectively, apparently as the result of the proximity of the bis(2-chloroethyl)amino moiety. In general, the carbon signals of C-2"/C-6" and C-3"/C-5" signals resonated in the expected regions (see Table III). However, a large upfield shift noted for the carbon of the methyl group attached to C-2"/C-6" in **3e** is likely the result of a γ-interaction with the non-bonded electrons of the exocyclic oxygen 14–16 atom which, in turn, may force the methyl carbons out of the plane of the aromatic ring.

The downfield ¹³C NMR signal at 142.9 ppm in **3j** was attributed to the attached aryl carbon of the phenyl group. Compounds **3k** and **3m** showed a similar signal for C-4" at 130.2 and 125.5 ppm, respectively. The methyl carbons attached to C-4" and C-2"/C-6" appeared at 20.3 and 20.6 ppm in **3c** and **3e**, respectively. Interestingly, the quaternary carbon of the *t*-butyl carbon at C-4' resonated at 36.1 ppm, and the methyl carbons of the *t*-butyl group appeared as a high intensity singlet at 13.7 ppm in **3j**.

Resonances for ³¹P signals (Table II) in the NMR spectra were observed in the range of -5.14 to -14.70 ppm for **3a-3g**. Heterocycles **3h-3o** exhibited ³¹P NMR signals somewhat downfield and in the region of +51.47 to +86.23 ppm. The difference in the ³¹P NMR chemical shift of naphthoxazaphosphorin 2-oxides (**3a-3g**) and naphthoxazaphosphorin 2-sulfides (**3h-3o**) may be due, in part, to the difference in the electronegative differences between oxygen and sulfur as well as subtle steric effects imposed by substituents.

The EI mass spectra of 3 (Table IV) exhibited M^+ , along with isotopic peaks in the expected ratio which confirmed the presence of bromine, sulfur, and chlorine atoms. Other characteristic major daughter ions are observed 18 at $(M^+-R)^+$, $(M^+-OR)^+$, $(M^+-O_2RPX)^+$, and $[(M^+-OR)^+-PX]^+$. (Scheme II). The appearance of these ions support the proposed structures for member of 3.

TABLE IV Mass spectral data for representative members of 3

Compd	m/z (relative intensity)
3a	467 [(M ⁺ + 2), 86], 465 (M ⁺ , 87), 3.88 (12), 372 (58), 325 (14), 309 (100) 230 (44), 167 (28) 128 (45), 115 (13), 77 (53)
3e	495 [(M ⁺⁺ + 2), 100], 493 (M ⁺⁺ , 100), 388 (18), 372 (85), 325 (90), 309 (28), 230 (14), 195 (13) 128 (43), 105 (16), 77 (44)
3f	503 [(M ⁺⁺ + 4), 30], 501 [(M ⁺⁺ + 2), 100], 499 (M ⁺⁺ , 100), 419 (18), 388 (24), 372 (56), 325 (68), 309 (14), 230 (18), 195 (39), 128 (41)
3h	499 [(M ⁺ + 4), 2], 497 [(M ⁺ + 2), 35], 495 (M ⁺ ., 38), 419 (22), 405 (4), 387 (6), 325 (16), 309 (11), 230 (8), 189 (100), 154 (18), 126 (20), 128 (14), 108 (1)
3k	521 [(M ⁺ + 6), 2], 519 [(M ⁺ + 4), 5], 517 [(M ⁺ + 2), 20], 515 [(M ⁺ , 10), 482 (20), 404 (3), 388 (5), 325 (6), 309 (8), 230 (5), 209 (100), 174 (22), 152 (8), 126 (16)
30	536 [(M ⁺⁺ + 8), 2], 534 [(M ⁺⁺ + 6), 6], 532 [(M ⁺⁺ + 4), 5], 530 [(M ⁺⁺ + 2), 26], 528 (M ⁺⁺ , 18), 513 (18), 464 (15), 388 (11), 373 (19), 368 (6), 342 (14), 325 (23), 309 (100), 230 (10), 200 (33), 153 (20), 128 (33)

ANTIMICROBIAL STUDIES

All the naphth[1,2-e]oxazaphosphorn 2-oxides/sulfides were tested for antibacterial activity on *Bacillus subtilis* and *Klebsiella pneumoniae* at concentrations of 250 and 500 ppm by using the Vincent method. ¹⁹ The compounds containing substituted chloro- and nitroaryloxy, as well as the arylthio groups, showed reasonable activity against these bacteria at the two concentrations (Table V). Antifungal activity was determined by using the Horsfall and Rich technique²⁰ on *Aspergillus niger* and *Curvularia lunata*. The best activity in the P \rightarrow O series (3a-3g) was observed with 3f and 3g while in the P \rightarrow S series 3l, 3m, and 3o proved most effective against *Bacillus subtilis* and *Klebsiella pneumonia*, particularly at the concentration of 500 ppm. Tetracycline was the standard employed for the study with these two bacteria and showed zones of inhibition of 30 mm and 25 mm at 100 ppm, respectively.

Compd	Bacillus	Subtilus		siella noniae		rgillus iger	Curvula	iria lunata
•	250°	500 ^u	250 ⁴	500 ^a	250ª	500°	250 ^u	500 ⁴
3a	12	14	9	10	62	83	63	80
3b	_b	-	-	-	55	67	51	65
3c	_	-	_	-	72	84	64	78
3d	-	-	-	-	65	7 7	58	70
3e	-	-	-	-	58	65	55	68
3f	13	15	11	12	75	91	65	81
3g	14	16	10	12	75	86	71	88
3h	-	_	-	-	_	-	_	-
3i	11	14	9	13	60	72	68	53
3j	-	-	-	-	55	67	62	78
3k	15	17	1,2	15	72	85	78	91
31	16	19	14	16	75	89	81	95
3m	15	20	13	17	74	92	79	88
3n	14	18	14	16	75	92	79	94
30	18	22	17	20	80	94	85	96

a. Concentration in ppm.

Griseofulvin was the reference compound in the investigation with the two fungi and, at 50 ppm, exhibited 100% inhibition of growth of Aspergillus niger and Curvularia lunata. In the series of 3a-3g and at 250 ppm, 3f and 3g were again the most effective against the latter two bacteria while in the series 3h-3o both 3l and 3o exhibited the highest inhibition of growth at 250 ppm.

In summary, it is clear that the activity of agents **3a-3o** in terms of inhibition of growth of the four bacteria is modest. Nevertheless, the unusual title compounds may well possess useful properties as antibacterial agents against other bacteria or for insecticidal purposes, and thus such heterocycles deserve additional evaluation.

CONCLUSIONS

We have developed a simple method to obtain several of the first members of the title compounds from available bifunctional phenols/amines. The

b. The hyphen "-" indicates inactivity.

structures of the target products were confirmed by elemental and spectral characterization. In addition, preliminary antimicrobial activity for this new family of organophosphorus heterocycles was modestly effective as growth inhibitors of the bacteria Bacillus subtilis and Klebsiella pneumoniae and against the fungi Aspergillus niger and Curvularia lunata.

EXPERIMENTAL

Melting points were obtained on a Mel-Temp apparatus and were not corrected. Elemental analyses were recorded by RSIC, Central Drug Research Institute. Lucknow India. IR spectra were recorded in KBr pellets on a Perkin-Elmer 1430 unit. All ¹H, ¹³C, and ³¹P NMR spectra were taken on a Varian Gemini 300 MHz NMR spectrometer operating at 299.9 MHz for ¹H, 75.43 MHz for ¹³C, and 121.7 MHz for ³¹P. All NMR data were observed on solutions of DCCl₃ or DMSO-d₆ and were referenced from TMS (¹H and ¹³C, δ or ppm). All ³¹P NMR data were taken on similar solutions and referenced to 85% H₃PO₄ (³¹P, ppm). Mass spectral data (El) were collected on a JEOL JMSD-300 instrument at 70 eV with a direct inlet system. General procedures for the preparations of members of 3a-3g and 3h-3o are illustrated with the syntheses of 3a and 3k, respectively. Intermediate 2 could not be isolated since it was extremely moisture sensitive and had to be utilized in situ as formed without exposure to the atmosphere.

2-Phenoxy-2,3-dihydro-3-(4'-bromophenyl)-1H-naphth[1,2-e] [1,3,2]oxazaphosphorin 2-Oxide (3a)

A solution of phenylphosphorodichloridate (0.63 g, 0.003 mol) in dry toluene (20 mL) was added dropwise (20 min) to a cooled (0 °C) and stirred solution of 1-(4-bromoanilinomethyl)-2-naphthol (1, 1.06 g, 0.003 mol) and triethylamine (0.60 g, 0.006 mol) in dry toluene (60 mL). After completion of the addition, the temperature of the reaction mixture was slowly raised to room temperature and was stirred for 2 h. The reaction mixture was then heated to 50–55 °C for another 3 h with stirring. Monitoring of the reaction was accomplished by TLC analysis. The solid triethylamine hydrochloride was filtered off, and the filtrate was evaporated under

reduced pressure. The resulting gummy residue was washed with water, dried, and washed with cold 2-propanol. A white amorphous solid obtained was recrystallized (ethanol) to afford 3a; yield 0.84 g (60%), mp 149–150 °C. Physical and spectral data for 3a-o are given in Tables I-IV.

2-(4"-Chlorophenoxy)-2,3-dihydro-3-(4'-bromophenyl)-1*H*-naphth[1,2-*e*][1,3,2]oxazaphosphorin 2-Sulfide (3k)

A solution of thiophosphoryl chloride (0.51 g, 0.003 mol) in dry toluene (20 mL) was added dropwise to a cooled (0 °C) and stirred solution of 1-(4-bromoanilinomethyl)-2-naphthol (1, 1.06 g, 0.003 mol) and triethylamine (0.60 g, 0.006 mol) in dry toluene (20 mL). After the addition, the temperature of the reaction mixture was slowly raised to room temperature and was maintained there for 2 h. Stirring was continued for another 3 h at 40–50 °C. Formation of the intermediate, 2-chloro-2,3-dihydro-3-(4'-bromophenyl)-1H-naphth[1,2-e][1,3,2]oxazaphosphorin 2-sulfide (2) was monitored by TLC.

To a cooled (0–5 °C) solution of 2 (not purified) was added dropwise a solution of 4-chlorophenol (0.38 g, 0.003 mol) and bis(2-chloroethyl)-amine (0.4 g, 0.003 mol) in dry toluene (20 mL). After the addition, the temperature of the reaction mixure was raised slowly to 40–50 °C, and stirring was continued for another 3 h. TLC analysis was utilized to determine the completion of the reaction. Solid bis(2-chloroethyl)-amine hydrochloride was filtered off, and the solvent was evaporated under reduced pressure. The residue was washed with water and cold 2-propanol. Recrystallization of the solid (2-propanol) afforded 3k (0.85 g, 55%), mp 183–184 °C.

Acknowledgements

The authors express thanks to Dr. C. Naga Raju, Department of Chemical Engineering, Sri Venkateswara University, Tirupati, for fruitful discussions. We also thank Dr. P. Prasad Babu, Department of Botany, Sri Venkasewara University, Tirupati, for help in the evaluations of the antimicrobial activities of the agents. Thanks are also gratefully extended to acknowledge funding for the Varian Gemini 300 MHz NMR spectrometer in the Oklahoma Statewide Shared NMR Facility by the National Science Foundation (BIR-9512269), the Oklahoma State Regents for Higher Education, the W. M. Keck Foundation, and Conoco, Inc.

References

- [1] N. V. N. Kumar, E. O. J. Bull, E. Prabhakar, C. N. Raju, and M. S. R. Naidu, *Poll. Res.*, 9, 133 (1990).
- [2] H. Arnold, F. Bourseaux, and N. Brock, Nature, 181, 931 (1958).
- [3] W. J. Bruke, K. C. Murdock, and E. C. Grace, J. Am. Chem. Soc., 84, 31074 (1976).
- [4] C. D. Reddy, H. Ammanni, and R. S. Reddy, Proc. Indian Acad. Sci. (Chem. Sci.), 100, 477 (1988).
- [5] L. C. Thomas and R. A. Chittenden, Chem. Soc. (London), 1913 (1961).
- [6] L. C. Thomas, Interpretation of the Infrared Spectra of Organophosphorus Compounds (Heydon, London, 1974).
- [7] L. C. Thomas and R. A. Chittenden, Spectro. Chim. Acta., 20, 1679 (1964).
- [8] L. C. Thomas and R. A. Chittenden, Spectro. Chim. Acta., 20, 489 (1964).
- [9] R. A. Nyquist, Spectro. Chim. Acta., 19, 713 (1963).
- [10] B. Holmstedt and L. Larsson, Acta. Chem. Scand., 5, 1179 (1951).
- [11] F. Herail, Compt. Rend., 262, C22 (1966).
- [12] C. N. Raju, M. S. R. Naidu, E. O. John, and M. C. Reddy, Magn. Reson. Chem., 28, 908 (1990).
- [13] T. S. Cameron, F. E. Cardos, T. Demir, and R. A. Shaw, J. Chem. Soc., Perkin Trans. 1, 2986 (1979).
- [14] G. W. Buchanan, R. H. Wightman, and M. Malaiyandi, Org. Magn. Reson., 19, 98 (1982).
- [15] G. W. Buchanan, D. A. Ross, and J. B. Stothers, J. Am. Chem. Soc., 88, 4301 (1966).
- [16] D. M. Grant and B. V. Cheney, J. Am. Chem. Soc., 89, 5315 (1967).
- [17] C. D. Reddy, R. S. Reddy, C. N. Raju, M. ElMasri, K. D. Berlin, and S. Subramanian, Magn. Reson. Chem., 29, 1140 (1990).
- [18] C. N. Raju, C. Dass, and G. S. Reddy, Indian J. Heterocyclic Chem., 4, 281 (1995).
- [19] J. C. Vincent and H. W. Vincent, Proc. Soc. Expt. Biol. Med., 55, 162 (1944).
- [20] J.C. Horsfall and S. Rich, Indian Phytopathol., 6, 1 (1963).